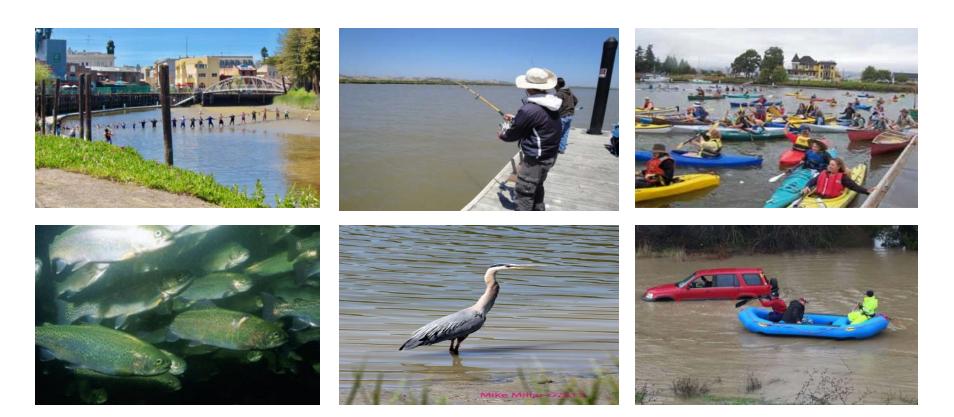
Petaluma River Bacteria and Nutrients TMDL: Stakeholder Meeting

Farhad Ghodrati & Kevin Lunde June 28, 2017

- Problem Definition
- Solution (TMDL Plan)
- Project Scope
- Impairment Assessment (Bacteria, Nutrients)
- Identified Pollution Sources
- Public Engagement

Problem: Excess Bacteria and Nutrients

- River is listed as "impaired" for:
 - bacteria (1976)
 - nutrients (1986)
- Does not meet water quality standards
- Beneficial uses (BUs) of River not protected → "Impairment"



*This is not a photo of the Petaluma River

Relevant Beneficial Uses of Petaluma River

BU -> Specific uses of water

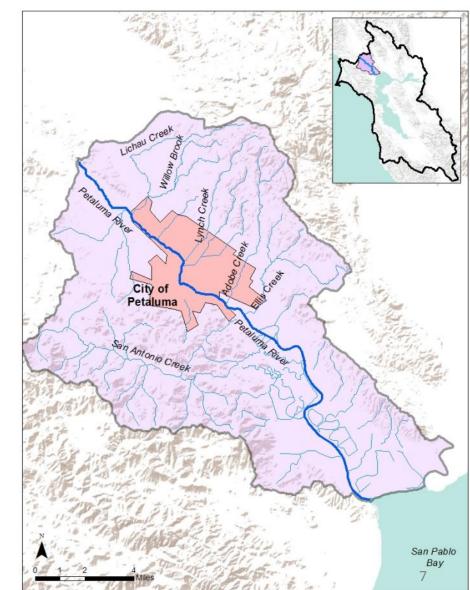
- Water recreation
- Wildlife habitat
- Fish spawning
- Estuarine habitat
- Cold & warm freshwater habitat Rare & endangered species habitat

Solution: Take Actions to Improve Water Quality

- TMDLs ("Total Maximum Daily Loads"):
 - Water quality improvement plans
 - Evaluate impairment
 - Identify pollution sources

- Set maximum pollutant limit
- Devise a plan of action to remedy the water quality impairment

Petaluma River Bacteria and Nutrients TMDL Project Scope


Addresses bacteria & nutrients impairments

Petaluma River Impairments	Status	
Bacteria	this project	
Nutrients	this project	
Diazinon	region-wide TMDL in place	
Trash	stormwater permit	
Sediment	later date	
Nickel (at the mouth only)	later date	

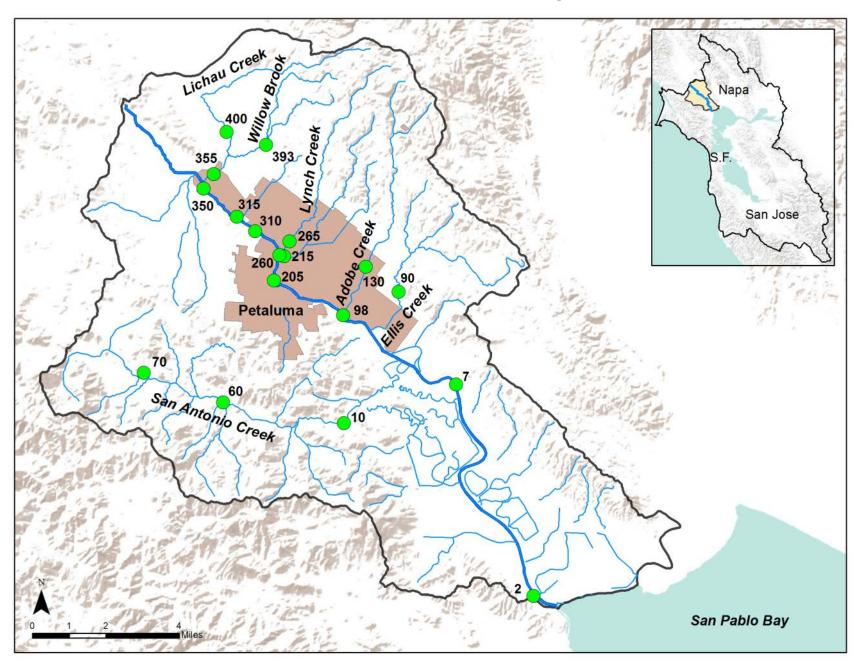
Sources of bacteria and nutrients are similar

Geographic Scope

- Project covers the entire Petaluma River watershed (150 square mile)
- Includes all tributaries, e.g., San Antonio Creek
- Tribs are connected to and discharge pollution into River

Impairment Assessment: How is the water quality now?

- Need to evaluate current status of impairments
- Recent and adequate data are needed
- Started bacteria and nutrients monitoring (2015)

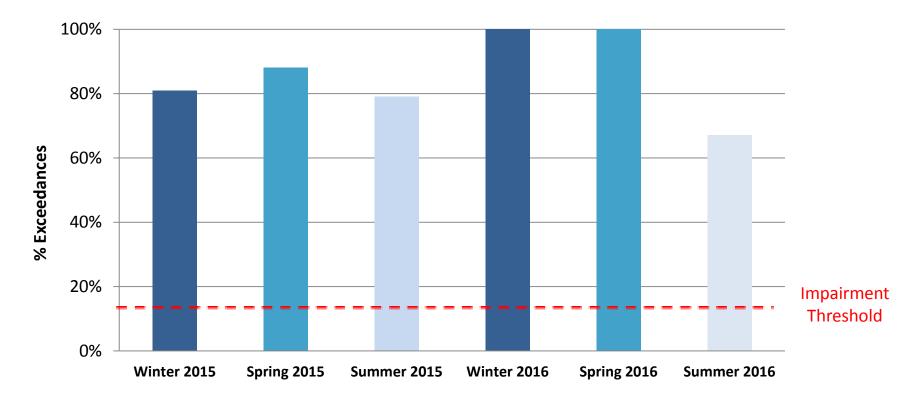

Bacteria and Nutrients Monitoring Overview

- Sampling schedule:
 - Winter, spring and summer 2015 & 2016
 - Winter 2017
- Constituents:
 - Bacteria (5 times per season)
 - Nutrients (once per season)
 - Algae (Spring 2016)
 - DO & pH (Spring 2016)
- 18 sites:
 - Perennial and non-perennial streams
 - Tidal and non-tidal sections of the River

Petaluma River Sample Sites

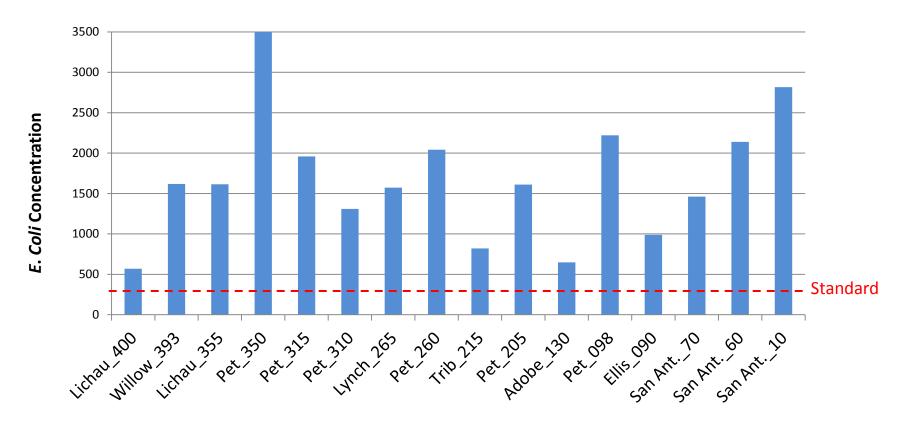
Bacteria Impairment Assessment

- Fecal Indicator Bacteria (FIB)
 - Indicate presence of fecal pollution
 - Suggests potential presence of pathogenic organisms
 - E. coli, Enterococcus
- Source-Specific Fecal Bacteria
 - Bacteroides bacteria
 - "DNA fingerprinting"
 - Identifies specific source of pollution
 - human, horse, dog, ruminant (cow, deer, elk...)

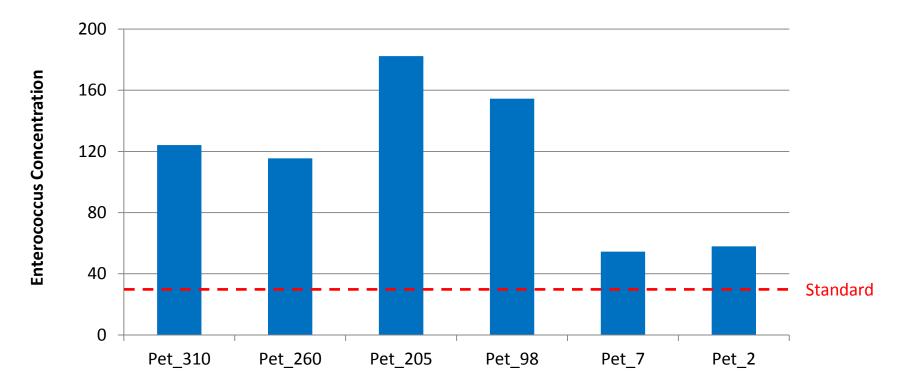


Bacteria Water Quality Standards

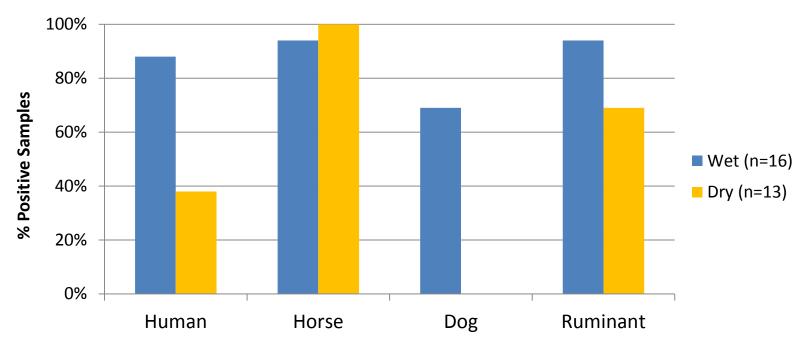
Indicator	Standard		
	Geometric Mean (per 100 mL)	Single Sample Maximum (per 100 mL)	
<i>Enterococcus</i> (estuarine & fresh water)	30	110	
<i>E. coli</i> (fresh water only)	100	320	


- Geometric mean: for five samples within a 30-day period
- Single sample maximum: for individual samples
- Impairment: >16% exceedance of these standards (California Listing Policy)

Percent Exceedances of E. coli Geometric Mean Standard By Season


- Significant exceedances of geomean standard
- Higher in wet season than dry season (2016)

Mean of *E. coli* Single Sample values By Sampling Station (2015-2016)


- All stations exceed standard
- Main stem and San Antonio Creek stations show higher levels

Enterococcus Geometric Mean Values Winter 2017 (five events)

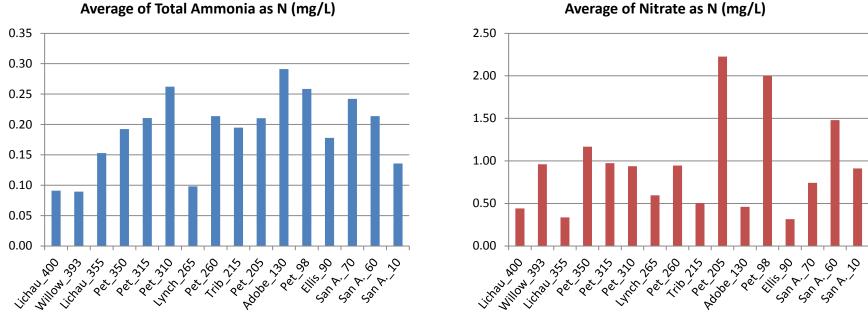
- Enterococcus sampling in tidal section of main stem
- All stations exceed standard, especially Pet_98 & Pet_205
- Will monitor again in summer

Bacteroides Results-2016

% of Positive Samples for Various Host-Specific Bacteroides

- Two rounds of sampling (February, June)
- All four Host-specific Bacteroides were detected
- Higher wet season "hits" than dry season hits

Nutrients Impairment Assessment


- Two types of impacts:
 - Toxic effects
 - Eutrophication
- Toxicity due to high ammonia or nitrate
- Ammonia thresholds
 - Total $(NH_3 + NH_4^+) = 0.6-3.3 \text{ mg/L}$
 - Unionized $(NH_3) = 0.025 \text{ mg/L}$ annual median
- Nitrate standard
 - 10 mg/L (for drinking water)
- Eutrophication → lowers DO, can cause toxic algal blooms, impedes recreation

Average Concentrations of Nitrate and Ammonia by Site (2015-2016)

Average of Total Ammonia as N (mg/L)

- Ammonia and nitrate levels are well below established toxicity standards \succ
- Petaluma mainstem (e.g., Pet_205, Pet_98) and San Antonio sites had highest nitrate levels

Summary of Exceedances of Numeric Evaluation Guidelines for Direct Indicators of Eutrophication

Analyte	Numeric Evaluation Guideline	Number & Percent of Exceedances	
Benthic algal chlorophyll a (COLD)	150 mg/m ²	(0/9) = 0%	
Percent macroalgae Cover	30%	(1/9) = 11%	
Benthic algal biomass (AFDW) (COLD)	60 g/m ²	(3/9) = 33%	
Water column chlorophyll a	15 μg/L	(0/9) = 0%	
Algae taxonomy indicators		Data forthcoming	

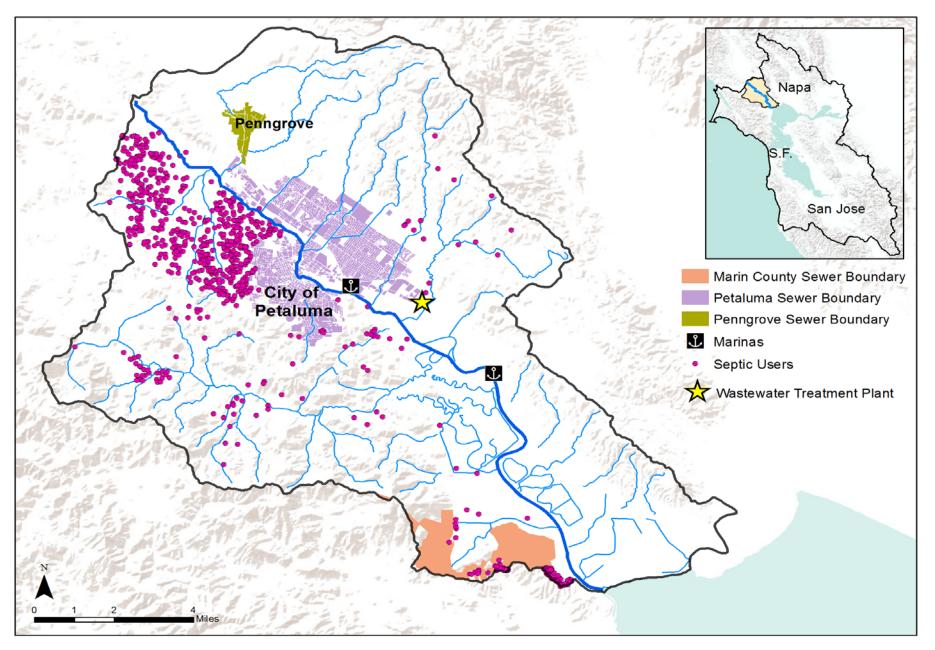
- Algal sampling at 9 freshwater sites (spring 2016)
- No strong indication of eutrophication
- No toxic algae problem

Summary of Exceedances of Numeric Evaluation Guidelines for Indirect Indicators of Eutrophication

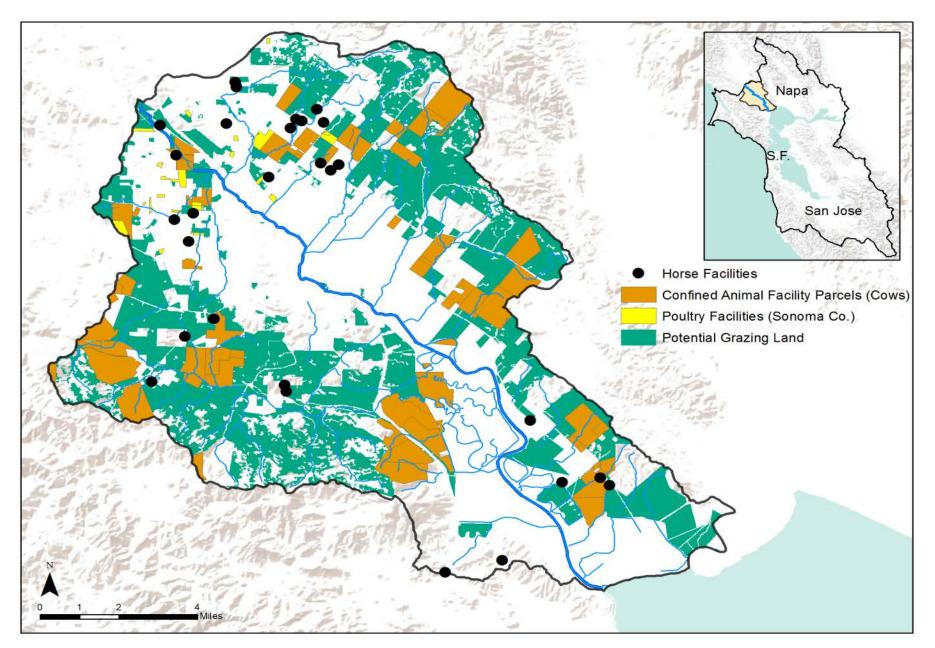
Analyte	Numeric Evaluation Guideline	Number & Percent of Exceedances	
pH-Instantaneous	6.5-8.5 units	(1/41,797) = 0.0%	
Dissolved oxygen-Instantaneous (WARM)	5.0 mg/L	(30,254/41,797) = 72%	
Dissolved oxygen-Instantaneous (COLD)	7.0 mg/L	(36,762/41,797) = 88%	
Daily dissolved oxygen change	5 mg/L	(55/444) = 12%	
Daily pH change	1 unit	(0/444) = 0%	

Continuous DO & pH readings at five sites (Spring-Summer 2016)

- Chronically low DO is observed but likely is not due to eutrophication
- Daily DO/pH fluctuations (signals of eutrophication) are low


Other Data

- SWAMP nutrients data (2003)
 - 7 sites (spring, summer, winter)
- CDFW historic ammonia data (1999-2001)
 - M. Rugg San Antonia Creek; Ellis Creek
 - 108 samples
- Any other data sources we have missed?


Potential Sources

Source Category	Potential Sources	Bacteria Source	Nutrient Source
Human Waste	Wastewater treatment plant	Х	Х
	Sanitary sewer systems	Х	Х
	Private sewer laterals	Х	Х
	Septic systems	Х	Х
	Vessel marinas	Х	Х
Animal Waste	Livestock - Confined animal facilities	Х	Х
	Livestock - Grazing lands/operations	Х	Х
	Domestic pets	Х	Х
	Wildlife	Х	Х
Municipal Stormwater Runoff	Runoff from residential, commercial, industrial, and recreational areas	Х	x

Human Sources

Animal Sources

Conclusions

- River is impaired by bacteria
- River is likely not impaired by nutrients/ eutrophication
- Control measures addressing bacteria discharges also address nutrient discharges

Public Engagement Opportunities

Project workshop & CEQA scoping meeting – Fall 2017

Public review of TMDL plan

Water Board adoption hearing

- 2018

> We are available to meet as requested

> Are there other interested parties we should engage?

Project Contacts

Farhad Ghodrati Project Manager <u>fghodrati@waterboards.ca.gov</u> 510-622-2331

Project Website:

http://www.waterboards.ca.gov/sanfranciscobay/water issues/programs/TMDLs/petalumabacterianutrienttm dl.shtml